Agriculture
Diet, Injections, and Injunctions
From the Brownstone Institute
By
After the lockdowns of 2020 and the vaccine mandates of 2021, most Americans have heard about the idea of medical freedom and many have concerns about informed consent. One in four of our countrymen say they know someone who was seriously injured or killed by the Covid vaccines. The need for informed consent in medicine is apparent. But far fewer know anything about food freedom, or why it matters.
Medical freedom and food freedom are two sides of the same coin, and unless we fight to protect both, we will have neither.
Looking to the future in his 1951 book The Impact of Science on Society, the Nobel Prize-winning British mathematician, philosopher, and eugenicist Bertrand Russell forecast a future where the elites would use science as a means to control the population: “Diet, injections, and injunctions will combine, from a very early age, to produce the sort of character and the sort of beliefs that the authorities consider desirable, and any serious criticism of the powers that be will become psychologically impossible. Even if all are miserable, all will believe themselves happy, because the government will tell them that they are so.”
In The Scientific Outlook, Russell also wrote: “[In the future], [children’s] diet(s) will not be left to the caprices of parents, but will be such as the best biochemists recommend.”
While this likely sounded far-fetched to most of Russell’s contemporaries, his words capture our current era with alarming accuracy. In the past three years, millions of Americans saw their lives and livelihoods destroyed through injections and injunctions. Small businesses were decimated by the lockdowns. Legions of hard-working people faced ruin for demanding their right of informed consent – to evaluate the facts regarding any so-called medical treatment and to decide for themselves if they wanted it. They were fired for refusing the vaccine. They were killed with remdesivir. They died when doctors and bureaucrats denied them the truly safe and effective treatments they demanded, such as ivermectin.
Some of you are among the brave few who stood up in that moment and did what was right, to protect patients and vulnerable people at great cost to yourselves. I applaud you for this. You know first-hand what it means to have the boot of Injections and Injunctions on your face.
Now the third piece of the control grid Russell laid out must come into focus: diet. The battle to control you through what you eat is very real. It threatens to destroy what sovereignty we have left, and it is being perpetrated by the very same people who brought you “safe and effective injections” and “two weeks to slow the spread.”
The Covid lockdowns revealed the weakness of our overly centralized supply food chain on a global level. Government-mandated shutdowns disrupted food distribution hubs and shuttered meat processing plants, causing chaos, riots, and unrest worldwide as people scrambled to find food for their families. The situation deteriorated further when Russia invaded Ukraine, the breadbasket of Europe; numerous countries in Asia and Africa depended on Ukrainian grain for their sustenance. The decreased harvest drove up grain prices around the world, contributing to terrible food shortages for millions.
In 2023, 282 million people globally experienced high levels of acute hunger – an increase of 8.5 percent from 2022’s already elevated levels. In the United States, one in eight American households lacked adequate food in 2022, according to a report from the US Department of Agriculture.
You’d think this would be the time to support farmers around the world who are trying to feed the hungry masses, and to encourage local food systems that are resilient in the face of supply-chain disruption. Instead, in country after country, World Economic Forum-affiliated leaders are cracking down on independent farmers and forcing them to comply with draconian new rules in the name of combating climate change.
In Sri Lanka, the World Economic Forum-affiliated Prime Minister Ranil Wickremesinghe banned all chemical fertilizers in a bid to combat climate change, forcing farms to go organic overnight, something which any organic farmer will tell you is a recipe for disaster – making a change like this, even on a single farm, takes planning and time. Combined with an acute diesel shortage, this edict left farms unable to operate, leading to soaring food prices and famine. The situation became so dire that in 2022, hundreds of thousands of Sri Lankans rioted, invaded the presidential palace, and overthrew their government.
In Ireland, the agricultural sector has been ordered to cut carbon emissions by 25% in the next seven years. This requirement will drive many farms into bankruptcy and will force the culling of hundreds of thousands of cows.
In Canada, the goal is fertilizer reduction of 30%, including reductions in manure use on organic farms – the only viable alternative to chemical fertilizer. Farmers are ringing the alarm bells that this policy will devastate the food supply. Even though milk prices are hitting record levels, Canadian officials still force farmers to dump their milk if they produce more than an arbitrary quota. Dairy owners are banned from giving the milk away to neighbors or homeless shelters. In Ontario, farmers cannot sell their milk directly to consumers at all, but must sell it to a single government-approved body which then decides how it is distributed.
In the Netherlands, the government is requiring a 30% reduction in livestock and mandating cuts in nitrogen of up to 95% – nitrogen that is released from cow manure and, if used properly, is an earth-friendly fertilizer. The government also plans to seize and shut down up to 3,000 farms to meet climate objectives. Protests by Dutch farmers have been met with force, including the police firing live ammunition rounds at protesters.
Denmark, Belgium, and Germany are considering similar nitrogen reduction policies. Both the UK and US have already put schemes into place to pay farmers not to farm. In huge areas of the Midwest, large corporations are seizing prime farmland by eminent domain to install solar farms – installations that could instead be built in sunny, arid deserts where they would not disrupt the food supply.
All of this is happening at a time when we need more food and farms, not a reduction.
In the United States, there are many small, regenerative organic farms that raise pastured meats, dairy, and poultry on perennial pastures, without the use of chemical fertilizers, using animal manure to feed the grasses in a beautiful holistic cycle that is environmentally friendly and has starkly lower methane and carbon emissions compared to industrial farming. It reduces nitrogen runoff into rivers and streams and prevents erosion. If our government truly cared about climate change and human health, bureaucrats and scientists would be visiting these farms, begging to learn how to implement their methods to save the planet. Instead, these farmers are facing increased harassment and raids by armed agents seeking to shut down their operations.
You may have heard about Amos Miller, the Amish farmer from Lancaster, Pennsylvania who has been facing persecution from the CDC, FDA, and USDA for 7 years now for the unforgivable crime of providing raw milk and farm-processed, non-USDA inspected meats to customers who know what they are getting and want it exactly that way. We’ll get into why his customers want non-USDA-inspected meats later in this series. But for now, know that such raids are frequent and are threatening our ability to access local, healthy, environmentally friendly meats and dairy.
Since 2020 there has been a significant increase in the number of unexplained fires and other events damaging farms, barns, food warehouses, food pantries, and the food supply chain in general, prompting the FBI to warn that the food system is under threat from cyberattacks.
So why is this happening? Why is our food supply being disrupted, seemingly on purpose? And who is behind this global assault on our farmers?
Agriculture
The Role of Satellite Imagery in Developing VRA Prescription Maps
Since its appearance in the 1980s, precision agriculture has revolutionized farming, offering innovative solutions to age-old challenges. One of those is Variable rate technology (VRT), which plays a key role in improving efficiency and sustainability in today’s farming methods.
By applying inputs like fertilizers and water in different quantities across the field, VRT helps optimize crop yields and reduce costs. This technology relies on data collection and analysis to create detailed VRA prescription maps, allowing for customized input applications.
With the right equipment and technology, VRT can significantly improve agricultural productivity. Today’s advanced tractors, equipped with built-in terminals and specialized software integrated with a precision agriculture platform, use prescription maps to accurately apply variable rates of water or chemicals based on GPS location and management zones.
Variable Rate Technology In Precision Agriculture
Precision agriculture is a game-changer, moving far beyond traditional farming methods. Often called satellite farming, this approach focuses on crop condition monitoring, measuring, and responding to variability within fields. One of its standout innovations is variable rate application (VRA), which has caught the attention of farmers worldwide for its immense potential.
Why is VRA so important? It goes beyond simply fertilizing, seeding, and applying pesticides. It’s about utilizing technology to apply various expendable materials on and beneath the field automatically.
Farm management software simplifies contemporary farming by combining data and technology to improve farming efficiency, sustainability, and profitability. Precision agriculture platforms consolidate operations, crop health monitoring through satellite imagery, and offer real-time suggestions, enabling farmers to make informed decisions for the best use of resources (through VRA) and increased productivity.
Variable rate application offers numerous advantages for modern agriculture:
- VR fertilizer enhances farming efficiency.
Adjusting rates based on soil health and plant needs helps save resources and increase yields. Research shows this method can lead to higher net income and healthier soil compared to using uniform rates: “The net incomes of VR management zone were 15.5–449.61 USD ha−1 higher than that of traditional spatially uniform rate fertilization.”
- VR irrigation saves water, time, and fuel while reducing machinery wear.
Applying the correct amount of water to different parts of the field based on soil moisture levels and crop requirements reduces wear and tear on irrigation equipment compared to uniform irrigation.
Studies claim: “Variable rate irrigation (VRI) can increase water use efficiency and productivity by applying water based on site‐specific needs.”
- VR seeding increases crop yield by adjusting seeding rates based on soil fertility.
VR seeding adjusts seeding rates based on soil fertility and other factors to optimize plant populations and yields. It is commonly used alongside variable rate fertilization as part of a comprehensive precision agriculture strategy.
Findings show that: “The application of VRS to the seeding of various crops shows positive agro-economic trends, additional yields, and higher economic returns.”
- VR pesticide reduces environmental pollution and improves pesticide efficiency.
VRT helps farmers target pests more accurately and use less pesticide.
Studies have found that “VR management zone reduced the use of nitrogen (N), phosphorus (P), and potassium (K) fertilizers by 22.90–43.95%, 59.11–100%, and 8.21–100%, respectively, and it also increased the use efficiency of N, P, and K by 12.27–28.71, 89.64–176.85, and 5.48–266.89 kg/kg, respectively, without yield loss.”
This demonstrates the ability of variable rate technologies to improve pesticide effectiveness and reduce environmental pollution in agriculture.
Using Various Technological Means For Informed Decisions
Applying different technological tools is essential for implementing variable rate technology in agriculture. This includes smart machinery, fertilizers, seeders, soil sensors, geographic information system (also called GIS), and the Global Navigation Satellite System (GNSS) applications for field mapping. Additionally, having supporting infrastructure, which helps manage and analyze info from different sources, is crucial for successful implementation.
Understanding the location, timing, and methods for seeding, fertilizing, and harvesting is key in remote crop monitoring and precision agriculture, where data plays a vital role in managing resources effectively.
This information is taken from a wide variety of data sources.
- Sensors. Moisture, soil nutrients, compaction, weather stations (humidity, temperature, wind speed)
- Drones and satellite photography. Field hyperspectral imaging.
- GNSS. Event coordinates, also points and times for obtaining time-series data
- Spatio-temporal data sources. Spatio-temporal specific data (trajectories of agricultural machinery, spatiotemporal points, event points, time-series information)
- Maps. Field boundaries, soil type, surface levels)
- AI solutions. Prediction of weather conditions, detection of plant diseases.
However, simply collecting raw data is not sufficient. It is necessary to process this information to extract valuable insights, make informed decisions, and enable automatic alerts and control signals for agricultural equipment. Thus, you must have the capability to:
- Gather data;
- Transform the data to extract valuable insights for precision farming gear;
- Upload the data into agricultural equipment;
- Retrieve real-time data from tractors, seeders, fertilizers, and other machinery.
By following these steps, farmers can make the most of modern technology, optimizing their farming practices and boosting efficiency.
Use Of Satellite Images In Building VRT Maps
Satellite crop monitoring imagery can be used to generate different kinds of VRA maps for various purposes. As nitrogen is one of the most critical elements plants need, building map for its proper application is a major task.
Nitrogen fertilization maps play a crucial role in optimizing the application of water, nitrogen, and crop protection products.
When creating a VRA map for nitrogen fertilizer, you can choose from various indices that provide valuable insights:
- MSAVI is sensitive to uncovered soil and, therefore, is ideal for planning VR fertilizer application in the early stages of growth.
Example: Early in the growing season, a corn farmer uses MSAVI to detect patches of uncovered soil in their field. This helps them apply fertilizer more accurately, ensuring that nutrient-rich areas receive the right amount of input and promoting uniform growth.
- ReCI measures chlorophyll content in leaves, helping to identify field areas with faded and yellowed vegetation that may need additional fertilizer.
Example: A soybean grower notices using ReCI that certain sections of their field have yellowed leaves, indicating possible nutrient deficiencies. They apply additional fertilizer to these areas, restoring plant health and boosting overall yield.
- NDVI indicates biomass accumulation zones and areas with low vegetation that might demand larger amounts of fertilizer.
Example: A cotton producer uses NDVI to map out zones with varying levels of biomass across their field. They adjust their fertilizer application rates, applying more in areas with lower vegetation to support growth and maximize their harvest.
- NDMI is well-suited for VR irrigation by identifying areas that are under water stress.
Example: During a hot summer, a vineyard uses NDMI to pinpoint areas suffering from water stress. They adjust their irrigation system to provide extra water where it’s needed, ensuring the vines remain healthy and productive.
-
- NDRE helps identify stressed or dying vegetation in the middle to late stages of a season, aiding in effective fertilization strategies.
- Example: During the season, a wheat farmer uses NDRE to identify patches of the field where the wheat plants are showing signs of nutrient stress or poor growth. By applying a mid-season nutrient boost specifically to these stressed areas, the farmer improves the overall health and yield potential of the wheat crop.
Field Productivity Maps
Field productivity maps can be created by analyzing satellite images to pinpoint areas with high or low crop yields. By using the NDVI index and advanced machine learning algorithms, different productivity zones can be identified.
Key applications of productivity maps include:
- Potassium and phosphorus fertilization
Historical productivity zones data can help avoid excessive application in areas where these nutrients may have accumulated with time.
- Variable rate planting
Farmers can apply different seed amounts in various productivity zones to either maximize yield or achieve uniform distribution across the field.
- Land evaluation
Field productivity can be assessed before purchasing or renting land; it helps reduce risk and enhance profitability.
- Targeted soil sampling
Soil sampling efforts can be focused on key areas indicated by productivity data, rather than relying on generic grid sampling.
As you see, variable rate application (VRA) is a cost-effective method that can save you 10% on planting and cultivation costs based on the characteristics of the soil. To fully benefit from VRA, it’s important to understand the technologies involved, such as sensors, GNSS, earth observation pictures from drones and satellites, and digital maps, which provide crucial data for analysis and implementation. We sincerely hope that you succeed in your farming endeavors with modern technology!
______________
Author Vasyl Cherlinka
Vasyl Cherlinka is a Doctor of Biosciences specializing in pedology (soil science), with 30 years of experience in the field. With a degree in agrochemistry, agronomy and soil science, Dr. Cherlinka has been advising on these issues private sector for many years.
Agriculture
Restoring balance between renewable energy, agricultural land and Alberta’s iconic viewscapes
Alberta is known around the world for many things – some of the most breathtaking and iconic scenery on earth, a world-class agricultural industry that puts high-quality food on tables across the globe and a rich history of responsible energy development. Alberta is a destination of choice for millions of visitors, newcomers and investors each year.
To ensure Alberta’s continued prosperity, it is imperative that future energy development is balanced with environmental stewardship, protecting Albertans’ ability to use and enjoy their property, and safeguarding agriculture for continued food security.
Alberta’s renewable energy sector has grown rapidly over the past decade, yet the rules to ensure responsible development have not kept up. As a result, municipalities, agricultural producers and landowners across the province raised concerns. Alberta’s government is fulfilling its duty to put Albertans first and restore the balance needed for long-term success by setting a clear path forward for responsible renewable energy development.
“We are doing the hard work necessary to ensure future generations can continue to enjoy the same Alberta that we know and love. By conserving our environment, agricultural lands and beautiful viewscapes, our government is protecting and balancing Alberta’s long-term economic prosperity. Our government will not apologize for putting Albertans ahead of corporate interests.”
Amendments to the Activities Designation Regulation and Conservation and Reclamation Regulation provide clarity for renewable energy developers on new and existing environmental protections.
These changes will create consistent reclamation requirements across all forms of renewable energy operations, including a mandatory reclamation security requirement. Albertans expect renewable power generation projects to be responsibly decommissioned and reclaimed for future generations. Alberta’s government stands firm in its commitment to protect landowners and taxpayers from being burdened with reclamation costs.
“We want to protect landowners, municipalities and taxpayers from unfairly having to cover the costs of renewable energy reclamations in the future. These changes will help make sure that all renewable energy projects provide reasonable security up front and that land will be reclaimed for future generations.”
Alberta’s government committed to an ‘agriculture first’ approach for future development, safeguarding the province’s native grasslands, irrigable and productive lands. The protection of agricultural land is not only essential to food production, but to environmental stewardship and local wildlife protection.
The Electric Energy Land Use and Visual Assessment Regulation follows this ‘agriculture first’ approach and enhances protections for municipalities’ most productive lands, establishing the need to consider potential irrigability and whether projects can co-exist with agricultural operations. These changes are critical to minimizing the impacts of energy development on agricultural lands, protecting local ecosystems and global food security. With these new rules, Alberta’s farmers and ranchers can continue to produce the high-quality products that they are renowned for.
“Our province accounts for nearly 50 per cent of Canada’s cattle, produces the most potatoes in the country, and is the sugar beet capital of Canada. None of this would be possible without the valuable, productive farmland that these new rules protect. Understanding the need for an ‘agriculture first’ approach for energy development is as simple as no farms, no food.”
The new Electric Energy Land Use and Visual Assessment Regulation also establishes specific guidelines to prevent projects from impacting pristine viewscapes. By establishing buffer zones and visual impact assessment zones, Alberta’s government is ensuring that industrial power projects the size of the Calgary Tower cannot be built in front of UNESCO World Heritage sites and other specified viewscapes, which will support the continued growth and success of Alberta’s tourism sector.
As Alberta’s population and economy grows, it is critical that the province has the additional power generation needed to meet increasing demand. Power generation must be developed in a balanced and responsible manner that promotes environmental stewardship, ensures the continued enjoyment of Alberta’s beautiful landscapes, and safeguards food security by protecting Alberta’s valuable agricultural lands. By encouraging the responsible development of additional power generation with these new regulations, Alberta’s government is listening to Albertans and ensuring the electricity grid is affordable, reliable and sustainable for generations to come.
Summary of Policy Changes
Following the policy direction established on February 28, 2024, Alberta’s government is now implementing the following policy and regulatory changes for renewable power development:
Agricultural lands
The new Electric Energy Land Use and Visual Assessment Regulation takes an “agriculture first” approach.
• Renewable energy developments will no longer be permitted on Land Suitability Rating System (LSRS) Class 1 and 2 lands unless the proponent can demonstrate the ability for both crops and/or livestock to coexist with the renewable generation project,
• In municipalities without Class 1 or 2 lands, Class 3 lands will be treated as Class 1 and 2.
• An irrigability assessment must be conducted by proponents and considered by the AUC.
Reclamation security
Amendments to the Activities Designation Regulation and Conservation and Reclamation Regulation create consistent reclamation requirements across all forms of renewable energy operations, including a mandatory reclamation security requirement. There will be a mandatory security requirement for projects located on private lands.
• Developers will be responsible for reclamation costs via a mandatory security or bond.
• The reclamation security will either be provided directly to the province or may be negotiated with landowners if sufficient evidence is provided to the AUC.
Viewscapes
The Electric Energy Land Use and Visual Assessment Regulation ensures pristine viewscapes are conserved through the establishment of buffer zones and visual impact assessment zones as designated by the province.
• New wind projects will no longer be permitted within specified buffer zones.
o Other proposed electricity developments located within the buffer zones will be required to submit a
visual impact assessment before approval.
• All proposed electricity developments located within visual impact assessment zones will be required to submit a visual impact assessment before approval.
Municipalities
The AUC is implementing rule changes to:
• Automatically grant municipalities the right to participate in AUC hearings.
• Enable municipalities to be eligible to request cost recovery for participation and review.
• Allow municipalities to review rules related to municipal submission requirements while clarifying consultation requirements.
-
Catherine Herridge2 days ago
Return of the Diet Coke Button
-
Business1 day ago
Freeland and Carney owe Canadians clear answer on carbon taxes
-
Censorship Industrial Complex2 days ago
WEF Davos 2025: Attendees at annual meeting wrestling for control of information
-
Business1 day ago
Liberals to increase CBC funding to nearly $2 billion per year
-
Brownstone Institute1 day ago
The Deplorable Ethics of a Preemptive Pardon for Fauci
-
Business1 day ago
Carney says as PM he would replace the Carbon Tax with something ‘more effective’
-
Daily Caller1 day ago
Biden Pardons His Brother Jim And Other Family Members Just Moments Before Trump’s Swearing-In
-
Business1 day ago
UK lawmaker threatens to use Online Safety Act to censor social media platforms